
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Structure of Deep Learning Inference Engines for
Embedded Systems

Seung-mok Yoo
Embedded System Research Group

ETRI
Daejeon, Korea
 yoos@etri.re.kr

Jaebok Park, Seok Jin Yoon
Embedded System Research Group

ETRI
Daejeon, Korea

{parkjb, sjyoon }@etri.re.kr

Changsik Cho
Embedded System Research Group

ETRI
Daejeon, Korea
cscho@etri.re.kr

Youngwoon Lee
Dept. of Computer & Electronics

Convergence Engineering
SunMoon University

Asan, Korea
yw.lee@ivpl.sookmyung.ac.kr

Kyung Hee Lee
Embedded System Research Group

ETRI
Daejeon, Korea

kyunghee@etri.re.kr

Byung-Gyu Kim
Dept. of IT Engineering

Sookmyung Women’s University
Seoul, Korea

bg.kim@sookmyung.ac.kr

Abstract— For the last several years, various types of deep
learning applications have been introduced. Most deep learning
related research and development have been done on servers or
PCs with GPUs. Recently there have been a number of moves to
apply those applications to the industrial sector. When deep
learning techniques are applied to actual targets, we can face
some spatial and environmental constraints unlike the
laboratory environment.

In this paper, we describe requirements when deep learning
applications run for embedded systems. We introduce our
ongoing project on developing a deep learning framework for
embedded systems, especially automotive vehicles. Generally,
deep learning application development process can be divided
to two steps: training a data model with a big data set and
executing the data model with actual data. In our framework,
we focus on the execution step. We try to design an inference
engine to satisfy the operational requirements for embedded
systems. We describe our design direction and the structure. We
also show preliminary evaluation result.

Keywords—deep learning neural network, embedded system

I. INTRODUCTION
For the last several years, artificial intelligence has

attracted attention in both academic and industrial fields. It is
not special to see products using artificial intelligence
techniques around us any longer. Deep learning neural
networks are at the heart of the phenomenon. Some image
recognition algorithms based on the deep learning neural
network technique broke many records in competitions for
the last few years []. In some image recognition cases, it even
exceeds human accuracies. It was not until a few years ago
that Go's dominance was hard to overcome. However the
stereotype was broken after Se-dol Lee, a professional Go
player, was defeated by Google Alpha Go in the historic Go
match, 2016. This made people try to solve unsolved
problems with deep learning neural networks, and improve the
performance of their applications or overcome the hurdles
they face in a deep learning point of view.

Many applications based on deep learning techniques have
been developed on PCs with GPUs or servers in the laboratory.
It is because deep learning applications demand large memory
for many data sets and high speed computing power for
training the neural network consisting of multiple hidden
layers. It is well-known that it takes about a week to build a
deep learning data model on a server. Recently, image

recognition models have been planted on actual target
platforms, which are a special-purpose computers such as
mobile IoT devices or autonomous vehicles rather than servers
or PCs used in the laboratory. Because embedded systems are
generally deployed in the field, there are operational
requirements for the environment, physical size, etc. Deep
learning applications need computing accelerators such as
GPUs due to the use of large amounts of data and complex
iterative operations, but the processor performance and
architecture used in the embedded environment also affects
environmental conditions (e.g., temperature, power
consumption, etc.). It is necessary to design a hardware
suitable for the purpose without using the performance-based
system used in the existing research stage. Performance parts
cannot be overlooked because you have to consider the speed
when using video to recognize the outside environment while
driving like an autonomous vehicle. By default, you should be
able to meet the response time of several milliseconds.

In order to meet the above requirements when developing
a deep learning program for embedded systems, we try to
separate the development of a model based on learning and
the process to be performed after installation. During
development, the server is used to try to optimize the model,
and at run time, the model is used to process surrounding input
values, and it tends to be divided into models optimized for
inference and used. Currently there are several models such as
TensorFlow Lite and Windows ML, but they do not meet all
the above restrictions.

We are developing an inference engine for embedded
systems, which is designed to meet the above requirements.
For interoperability between training data models and
executing the data model, we provide an NNEF (Neural
Network Exchange Format) interface, which is an open format
driven by Khronos group [1]. For portability, our inference
engine runs on top of OpenCL which is supported most GPUs
in the market. For high performance, we design our engine
runs multi GPUs. By our preliminary, the OpenCL version
shows better performance than the CPU version, while
TensorFlow for OpenCL is worse than that for CPU [2].

The remainder of the paper is organized as follows. In
chapter 2, we describe the structure of PlaidML, which is the
basis of the model that we are developing. In chapter 3, the
requirements of automotive high performance computing
platform for embedded systems and we introduce the A.HPC.

920978-1-7281-0893-3/19/$31.00 ©2019 IEEE ICTC 2019

Authorized licensed use limited to: Product Marketing IEL. Downloaded on October 30,2020 at 16:10:55 UTC from IEEE Xplore. Restrictions apply.

We show the performance evaluations in chapter 4. We
conclude in chapter 4.

II. PLAIDML
PlaidML is an open source-based deep learning

framework developed by Intel [3]. PlaidML supports user
convenience, various user interface, and H / W platform. The
portability is excellent because the main parallel processing is
processed in an H / W-independent manner. Currently, it does
not support multiple GPUs. PlaidML is composed of the
frontend, python bindings, and the core layers as shown in
figure 1.

Fig. 1. PlaidML structure

The frontend layer is directly visible to users and
developers, and designed to give them programming
convenience. It provides Python APIs related to neural
network computations. Simple APIs are implemented in
Python, but other APIs that demand computing resources such
as GPU for complicated matrix operations are included in the
python bindings layer. The frontend layer also includes Keras,
ONNX (Open Neural Network Exchange), and nGraph, which
have been used in many applications recently. Developers can
write their programs using either PlaidML APIs or those
frontend interfaces already ported.

The python bindings layer is an intermediate layer for
connecting the frontend and core layers. This layer includes a
set of APIs, an operation library, and a parser for Tile, which
is a domain specific language used only in PlaidML to
generate GPU kernels. Complicated APIs are implemented in
this layer. Most of codes in this layer are written in C++ and
linked as a shared object in Linux.

Tile codes are close to mathematical notations. Tile
provides basic matrix operations and functions for neural
networks. Users can make their Tile functions in the frontend
layer. If user-defined functions are passed from the frontend
layer to the python bindings, they are compiled to intermediate
representation (IR) and transferred down to the core layer.

The Core layer consists of a HAL (Hardware Abstraction
Layer) and runtime modules. IR from the above layer is finally

compiled to the device-specific code in this layer. Once it is
compiled, it is executed in runtime module. Users can also
define a HAL for their own H/W platforms. Currently
PlaidML provides 4 HALs: CPU, OpenCL, CUDA, and Apple
Metal.

III. AUTOMOTIVE HPC ENGINE
We are developing a deep learning inference engine,

named Automotive High Performance Computing (A.HPC)
engine, for automotive vehicles. We design our engine to meet
the constraints for automotive vehicles described as follows.

We assume that training is done on the server side. There
are several deep learning frameworks in the market. They
have their own advantages and disadvantages. Some of them
should show better performance in terms of accuracy,
parallelism, training time, and so on. In general, people has
believed that when one framework is used for training on the
server side, the same framework should be used for inference
on the deployed platform. It has been kept for last several
years. For interoperability, we try to avoid this restriction by
providing a neural network exchange format (NNEF)
interface [4, 5]. NNEF is a version of the neural network
model presented by the Khronos group and version 1.0 was
released in 2018. The standardization work is continuing to
add other functions [6].

There is spatial and environmental constraints. Although
not explicitly stated for mobile IoT devices or autonomous
vehicles, there is a physical size limitation for each design. In
addition, there are constraints on temperature conditions and
power consumption. This has a direct limitation on the
memory and computational performance of the processor
within the embedded system. A processor that meets these
requirements typically has a lower performance and capacity
than a server. On the other hand, target applications with fast
running speed such as autonomous vehicles require ms-level
latency.

In the embedded system, there is a limitation on the lower
platform that can be used depending on the environment.
Especially for mobile devices, ARM processors are the
mainstream. Therefore, in the case of embedded systems,
unlike servers, assuming a tool or platform dependent on a
specific H / W, there are many limitations in developing and
installing the program. To overcome this, it is necessary to
develop based on standardized interface. The platform under
development is based on Khronos OpenCL and is available on
most commercial GPUs developed to date.

In order to satisfy the above constraints and the
performance requirement for quick response, the platform
under development satisfies the performance requirement by
supporting multi GPUs.

IV. PERMANCE EVALUATIONS
Our project is being development. We show the partial

performance of our engine in the chapter. The performance of
the inference engine mainly depends on that of CPU, GPU,
and memory for the processing. We use a mini-ITX board
with an AMD Ryzen 5 2400G processor, an AMD RX550
video card, and 32GB memory instead [7]. The CPU and GPU
were announced in 2018. PlaidML is also delicate in some

921

Authorized licensed use limited to: Product Marketing IEL. Downloaded on October 30,2020 at 16:10:55 UTC from IEEE Xplore. Restrictions apply.

sense. The inference engine runs on top of OpenCL, when
GPU operations are required. It is quite tricky to set up the
S/W environment. The working environment is as follows.
The OS is Ubuntu 18.04.1 LTS and the Linux kernel version
is 4.19.03, because the OpenCL driver for the GPU only
works on Ubuntu 18.04 and the GPU on the processor can be
identified in the Linux kernel version 4.18 and later.

We have made a program that can classify objects from a
camera input or a video file as shown in figure 2. For the object
classification, VGG16 is used in the program [8]. We run the
program in two different conditions, one on CPU-only and the
other on GPU, and measure each FPS (frame per second) of
the program. The performance improvement of the GPU
version is 216% over the CPU-only version. In our previous
work, we compared the performance of TensorFlow for
OpenCL over TensorFlow for CPU[2]. By our experiment, the
execution time of TensorFlow for OpenCL was slower than
that of TensorFlow for OpenCL. Although this experiment is
preliminary, the result is quite good compared to the
TensorFlow case.

Fig. 2. Screenshot of our test program

V. SUMMARY
In this paper, we have dealt with a deep learning

framework for embedded systems which has recently received
much attention. Deep learning S/W development process is
divided to the training phase to build a data model from a big

data set, and the inference phase to execute the data model
with actual data.

Our engine has been designed to run deep learning data
models in embedded systems efficiently. Thus we focus on the
deep learning inference. However, there is no restriction such
that users use the same deep learning framework during
training data models. By providing an NNEF interface in our
framework that we are developing, we allow users to build
their data models in any frameworks depending on their
preferences. There are spatial and environmental restrictions.
Depending on target applications, processors we can pick are
different from those for the laboratory environment.
Sometimes we should pick processors with which we are not
familiar. Still we need H/W acceleration. Thus our engine is
designed works on OpenCL which is provided by most GPUs
in the market. In other words, if any processors have OpenCL
working, our engine can run on them. In addition, our engine
is designed to support multiple GPUs to satisfy the
performance requirements.

ACKNOWLEDGMENT
This work was supported by Institute for Information &

Communications Technology Promotion (IITP) grant funded
by the Korea government(MSIP) (No. 2017-0-00068, A
Development of Driving Decision Engine for Autonomous
Driving (4th) using Driving Experience Information).

REFERENCES
[1] https://www.khronos.org/nnef
[2] Seung-mok Yoo, et al., “Platform-Independent High Performance

Inference Engine Running on GPUs,” The 12th IEMEK Symposium
on Embedded Technology, 2017.

[3] https://www.intel.ai/plaidml/
[4] https://www.khronos.org/
[5] Seung-mok Yoo, et al., “Frontend Adapter Based on PlaidML,” The

13th IEMEK Symposium on Embedded Technology, 2018.
[6] Kyung Hee Lee et al., “An Implementation of a Parser for Neural

Network Exchange Format,” The 13th IEMEK Symposium on
Embedded Technology, 2018.

[7] https://www.amd.com/
[8] Karen Simonyan, et al., “Very Deep Convolutional Networks for

Large-Scale Image Recognition,” arXiv technical report, 2014.

922

Authorized licensed use limited to: Product Marketing IEL. Downloaded on October 30,2020 at 16:10:55 UTC from IEEE Xplore. Restrictions apply.

