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Abstract— For the last several years, various types of deep 
learning applications have been introduced. Most deep learning 
related research and development have been done on servers or 
PCs with GPUs. Recently there have been a number of moves to 
apply those applications to the industrial sector. When deep 
learning techniques are applied to actual targets, we can face 
some spatial and environmental constraints unlike the 
laboratory environment. 

In this paper, we describe requirements when deep learning 
applications run for embedded systems. We introduce our 
ongoing project on developing a deep learning framework for 
embedded systems, especially automotive vehicles. Generally, 
deep learning application development process can be divided 
to two steps: training a data model with a big data set and 
executing the data model with actual data. In our framework, 
we focus on the execution step. We try to design an inference 
engine to satisfy the operational requirements for embedded 
systems. We describe our design direction and the structure. We 
also show preliminary evaluation result. 
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I. INTRODUCTION 
For the last several years, artificial intelligence has 

attracted attention in both academic and industrial fields. It is 
not special to see products using artificial intelligence 
techniques around us any longer. Deep learning neural 
networks are at the heart of the phenomenon. Some image 
recognition algorithms based on the deep learning neural 
network technique broke many records in  competitions for 
the last few years []. In some image recognition cases, it even 
exceeds human accuracies. It was not until a few years ago 
that Go's dominance was hard to overcome. However the 
stereotype was broken after Se-dol Lee, a professional Go 
player, was defeated by Google Alpha Go in the historic Go 
match, 2016. This made people try to solve  unsolved 
problems with deep learning neural networks, and improve the 
performance of their applications or overcome the hurdles 
they face in a deep learning point of view. 

Many applications based on deep learning techniques have 
been developed on PCs with GPUs or servers in the laboratory. 
It is because deep learning applications demand large memory 
for  many data sets and high speed computing power for 
training the neural network consisting of multiple hidden 
layers. It is well-known that it takes about a week to build a 
deep learning data model on a server. Recently, image 

recognition models have been planted on actual target  
platforms, which are a special-purpose computers such as 
mobile IoT devices or autonomous vehicles rather than servers 
or PCs used in the laboratory. Because embedded systems are 
generally deployed in the field, there are operational 
requirements for the environment, physical size, etc. Deep 
learning applications need computing accelerators such as 
GPUs due to the use of large amounts of data and complex 
iterative operations, but the processor performance and 
architecture used in the embedded environment also affects 
environmental conditions (e.g., temperature, power 
consumption, etc.). It is necessary to design a hardware 
suitable for the purpose without using the performance-based 
system used in the existing research stage. Performance parts 
cannot be overlooked because you have to consider the speed 
when using video to recognize the outside environment while 
driving like an autonomous vehicle. By default, you should be 
able to meet the response time of several milliseconds. 

In order to meet the above requirements when developing 
a deep learning program for embedded systems, we try to 
separate the development of a model based on learning and 
the process to be performed after installation. During 
development, the server is used to try to optimize the model, 
and at run time, the model is used to process surrounding input 
values, and it tends to be divided into models optimized for 
inference and used. Currently there are several models such as 
TensorFlow Lite and Windows ML, but they do not meet all 
the above restrictions. 

We are developing an inference engine for embedded 
systems, which is designed to meet the above requirements. 
For interoperability between training data models and 
executing the data model, we provide an NNEF (Neural 
Network Exchange Format) interface, which is an open format 
driven by Khronos group [1]. For portability, our inference 
engine runs on top of OpenCL which is supported most GPUs 
in the market. For high performance, we design our engine 
runs multi GPUs. By our preliminary, the OpenCL version 
shows better performance than the CPU version, while 
TensorFlow for OpenCL is worse than that for CPU [2]. 

The remainder of the paper is organized as follows. In 
chapter 2, we describe the structure of PlaidML, which is the 
basis of the model that we are developing. In chapter 3, the 
requirements of automotive high performance computing 
platform for embedded systems and we introduce the A.HPC. 
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We show the performance evaluations in chapter 4. We 
conclude in chapter 4. 

 

II. PLAIDML 
PlaidML is an open source-based deep learning 

framework developed by Intel [3]. PlaidML supports user 
convenience, various user interface, and H / W platform. The 
portability is excellent because the main parallel processing is 
processed in an H / W-independent manner. Currently, it does 
not support multiple GPUs. PlaidML is composed of the 
frontend, python bindings, and the core layers as shown in 
figure 1. 

 

 
Fig. 1. PlaidML structure 

 

The frontend layer is directly visible to users and 
developers, and designed to give them programming 
convenience. It provides Python APIs related to neural 
network computations. Simple APIs are implemented in 
Python, but other APIs that demand computing resources such 
as GPU for complicated matrix operations are included in the 
python bindings layer. The frontend layer also includes Keras, 
ONNX (Open Neural Network Exchange), and nGraph, which 
have been used in many applications recently. Developers can 
write their programs using either PlaidML APIs or those 
frontend interfaces already ported. 

The python bindings layer is an intermediate layer for 
connecting the frontend and core layers. This layer includes a 
set of APIs, an operation library, and a parser for Tile, which 
is a domain specific  language used only in PlaidML to 
generate GPU kernels. Complicated APIs are implemented in 
this layer. Most of codes in this layer are written in C++ and 
linked as a shared object in Linux. 

Tile codes are close to mathematical notations. Tile 
provides basic matrix operations and functions for neural 
networks. Users can make their Tile functions in the frontend 
layer. If user-defined functions are passed from the frontend 
layer to the python bindings, they are compiled to intermediate 
representation (IR) and transferred down to the core layer. 

The Core layer consists of a HAL (Hardware Abstraction 
Layer) and runtime modules. IR from the above layer is finally 

compiled to the device-specific code in this layer. Once it is 
compiled, it is executed in runtime module. Users can also 
define a HAL for their own H/W platforms. Currently 
PlaidML provides 4 HALs: CPU, OpenCL, CUDA, and Apple 
Metal. 

 

III. AUTOMOTIVE HPC ENGINE 
We are developing a deep learning inference engine, 

named Automotive High Performance Computing (A.HPC) 
engine, for automotive vehicles. We design our engine to meet 
the constraints for automotive vehicles described as follows. 

We assume that training is done on the server side. There 
are several deep learning frameworks in the market. They 
have their own advantages and disadvantages. Some of them 
should show better performance in terms of accuracy, 
parallelism, training time, and so on. In general, people has 
believed that when one framework is used for training on the 
server side, the same framework should be used for inference 
on the deployed platform. It has been kept for last several 
years. For interoperability, we try to avoid this restriction by 
providing a neural network exchange format (NNEF) 
interface [4, 5]. NNEF is a version of the neural network 
model presented by the Khronos group and version 1.0 was 
released in 2018. The standardization work is continuing to 
add other functions [6].  

There is spatial and environmental constraints. Although 
not explicitly stated for mobile IoT devices or autonomous 
vehicles, there is a physical size limitation for each design. In 
addition, there are constraints on temperature conditions and 
power consumption. This has a direct limitation on the 
memory and computational performance of the processor 
within the embedded system. A processor that meets these 
requirements typically has a lower performance and capacity 
than a server. On the other hand, target applications with fast 
running speed such as autonomous vehicles require ms-level 
latency.  

In the embedded system, there is a limitation on the lower 
platform that can be used depending on the environment. 
Especially for mobile devices, ARM processors are the 
mainstream. Therefore, in the case of embedded systems, 
unlike servers, assuming a tool or platform dependent on a 
specific H / W, there are many limitations in developing and 
installing the program. To overcome this, it is necessary to 
develop based on standardized interface. The platform under 
development is based on Khronos OpenCL and is available on 
most commercial GPUs developed to date. 

In order to satisfy the above constraints and the 
performance requirement for quick response, the platform 
under development satisfies the performance requirement by 
supporting multi GPUs. 

 

IV. PERMANCE EVALUATIONS 
Our project is being development. We show the partial 

performance of our engine in the chapter. The performance of 
the inference engine mainly depends on that of CPU, GPU, 
and memory for the processing. We use a mini-ITX board 
with an AMD Ryzen 5 2400G processor, an AMD RX550 
video card, and 32GB memory instead [7]. The CPU and GPU 
were announced in 2018. PlaidML is also delicate in some 
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sense. The inference engine runs on top of OpenCL, when 
GPU operations are required. It is quite tricky to set up the 
S/W environment. The working environment is as follows. 
The OS is Ubuntu 18.04.1 LTS and the Linux kernel version 
is 4.19.03, because the OpenCL driver for the GPU only 
works on Ubuntu 18.04 and the GPU on the processor can be 
identified in the Linux kernel version 4.18 and later. 

We have made a program that can classify objects from a 
camera input or a video file as shown in figure 2. For the object 
classification, VGG16 is used in the program [8]. We run the 
program in two different conditions, one on CPU-only and the 
other on GPU, and measure each FPS (frame per second) of 
the program. The performance improvement of the GPU 
version is 216% over the CPU-only version. In our previous 
work, we compared the performance of TensorFlow for 
OpenCL over TensorFlow for CPU[2]. By our experiment, the 
execution time of TensorFlow for OpenCL was slower than 
that of TensorFlow for OpenCL. Although this experiment is 
preliminary, the result is quite good compared to the 
TensorFlow case. 

 

 
Fig. 2. Screenshot of our test program 

 

V. SUMMARY 
In this paper, we have dealt with a deep learning 

framework for embedded systems which has recently received 
much attention. Deep learning S/W development process is 
divided to the training phase to build a data model from a big 

data set, and the inference phase to execute the data model 
with actual data.  

Our engine has been designed to run deep learning data 
models in embedded systems efficiently. Thus we focus on the 
deep learning inference. However, there is no restriction such 
that users use the same deep learning framework during 
training data models. By providing an NNEF interface in our 
framework that we are developing, we allow users to build 
their data models in any frameworks depending on their 
preferences. There are spatial and environmental restrictions. 
Depending on target applications, processors we can pick are 
different from those for the laboratory environment. 
Sometimes we should pick processors with which we are not 
familiar. Still we need H/W acceleration. Thus our engine is 
designed works on OpenCL which is provided by most GPUs 
in the market. In other words, if any processors have OpenCL 
working, our engine can run on them. In addition, our engine 
is designed to support multiple GPUs to satisfy the 
performance requirements. 
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